World Population Prospects 2017

Population Division
Publications
  • 2017 Revision
  • 2015 Revision
  • 2012 Revision
  • Journals and Papers
Raftery, A.E., N. Li, H. Ševčíková, P. Gerland, and G.K. Heilig (2012). "Bayesian probabilistic population projections for all countries." Proceedings of the National Academy of Sciences. 109 (35):13915-13921. doi: 10.1073/pnas.1211452109 [open access]
Raftery, A.E., N. Li, H. Ševčíková, P. Gerland, and G.K. Heilig (2012). "Bayesian probabilistic population projections for all countries. - Supporting information" Proceedings of the National Academy of Sciences. 109 (35):13915-13921. doi: 10.1073/pnas.1211452109 [open access]
Raftery, A. E., L. Alkema, and P. Gerland (2014). "Bayesian Population Projections for the United Nations." in: Statistical Science, 29(1), 58-68. doi: 10.1214/13-STS419 [open access]
Fosdick, B., and A. Raftery (2014). "Regional probabilistic fertility forecasting by modeling between-country correlations." in: Demographic Research, 30(35), 1011-1034. doi: 10.4054/DemRes.2014.30.35 [open access]
Alkema L., A.E. Raftery, P. Gerland, S.J. Clark, F. Pelletier, T. Buettner, and G.K. Heilig (2011). "Probabilistic Projections of the Total Fertility Rate for All Countries." in: Demography, 48:815-839. doi: 10.1007/s13524-011-0040-5
Alkema L., A.E. Raftery, P. Gerland, S.J. Clark, F. Pelletier, T. Buettner, and G.K. Heilig (2011). Online Resource 1 for "Probabilistic Projections of the Total Fertility Rate for All Countries." in: Demography, 48:815-839. doi: 10.1007/s13524-011-0040-5
Ševčíková, H., L. Alkema, and A.E. Raftery. (2011). "bayesTFR: An R Package for Probabilistic Projections of the Total Fertility Rate". in: Journal of Statistical Software, 43(1), 1-29. [open access]
Raftery, A. E., J.L. Chunn, P. Gerland, and H. Ševčíková, H. (2013). "Bayesian Probabilistic Projections of Life Expectancy for All Countries". in: Demography, 50(3), 777-801. doi: 10.1007/s13524-012-0193-x [open access]
Raftery, A.E., N. Lalic, and P. Gerland (2014). "Joint probabilistic projection of female and male life expectancy". in: Demographic Research, 30(27), 795-822. doi: 10.4054/DemRes.2014.30.27 [open access]
Bayesian probabilistic population projections: do it yourself. Ševčíková, H., A. E. Raftery, and P. Gerland. Joint Eurostat/UNECE Work Session on Demographic Projections, Rome, Italy. 29-31 October 2013.
White Paper: Probabilistic Projections of the Total Fertility Rate for All Countries for the 2010 World Population Prospects. Adrian E. Raftery, Leontine Alkema, Patrick Gerland, Samuel J. Clark, Francois Pelletier, Thomas Buettner, Gerhard Heilig, Nan Li, Hana Ševčíková. (United Nations population Division, Expert Group Meeting on Recent and Future Trends in Fertility, New York, 2-4 December 2009)
A stochastic version of the United Nations World Population Prospects: methodological improvements by using Bayesian fertility and mortality projections. Gerhard K. Heilig, Thomas Buettner, Nan Li, Patrick Gerland, Francois Pelletier, Leontine Alkema, Jennifer Chunn, Hana Ševčíková, Adrian E. Raftery. Joint Eurostat/UNECE Work Session on Demographic Projections, Lisbon, 23 April 2010.
Probabilistic Projections of the Total Fertility Rate for All Countries. Alkema, L., A.E. Raftery, P. Gerland, S. Clark, F. Pelletier, and T. Buettner. (2010). Center for Statistics and Social Sciences. Seattle, WA: University of Washington. Working Paper no. 97.
Bayesian Probabilistic Projections of Life Expectancy for All Countries. Chunn, J., A.E. Raftery, P. Gerland (2010). Center for Statistics and Social Sciences. Seattle, WA: University of Washington. Working Paper no. 105.
Future population trends found to be highly uncertain in Least Developed Countries. Gerhard K. Heilig, Thomas Buettner, Nan Li, Patrick Gerland, Leontine Alkema, Jennifer Chunn, Adrian E. Raftery. Unpublished manuscript. 16 March 2010.
Modifying the Lee-Carter method to project mortality changes up to 2100. Li, N. and P. Gerland. Population Association of America 2011 Annual Meeting - Washington, DC. Session 125: Formal Demography I: Mathematical Models and Methods.